'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { c(c(b(c(x)))) -> b(a(0(), c(x))) , c(c(x)) -> b(c(b(c(x)))) , a(0(), x) -> c(c(x))} Details: We have computed the following set of weak (innermost) dependency pairs: { c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x))) , c^#(c(x)) -> c_1(c^#(b(c(x)))) , a^#(0(), x) -> c_2(c^#(c(x)))} The usable rules are: { c(c(b(c(x)))) -> b(a(0(), c(x))) , c(c(x)) -> b(c(b(c(x)))) , a(0(), x) -> c(c(x))} The estimated dependency graph contains the following edges: {c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))} ==> {a^#(0(), x) -> c_2(c^#(c(x)))} {a^#(0(), x) -> c_2(c^#(c(x)))} ==> {c^#(c(x)) -> c_1(c^#(b(c(x))))} {a^#(0(), x) -> c_2(c^#(c(x)))} ==> {c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))} We consider the following path(s): 1) { c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x))) , a^#(0(), x) -> c_2(c^#(c(x)))} The usable rules for this path are the following: { c(c(b(c(x)))) -> b(a(0(), c(x))) , c(c(x)) -> b(c(b(c(x)))) , a(0(), x) -> c(c(x))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { c(c(b(c(x)))) -> b(a(0(), c(x))) , c(c(x)) -> b(c(b(c(x)))) , a(0(), x) -> c(c(x)) , c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x))) , a^#(0(), x) -> c_2(c^#(c(x)))} Details: We apply the weight gap principle, strictly orienting the rules {a^#(0(), x) -> c_2(c^#(c(x)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a^#(0(), x) -> c_2(c^#(c(x)))} Details: Interpretation Functions: c(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] a(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [0] c^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] a^#(x1, x2) = [1] x1 + [1] x2 + [4] c_1(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a(0(), x) -> c(c(x))} and weakly orienting the rules {a^#(0(), x) -> c_2(c^#(c(x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a(0(), x) -> c(c(x))} Details: Interpretation Functions: c(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] a(x1, x2) = [1] x1 + [1] x2 + [2] 0() = [0] c^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [9] a^#(x1, x2) = [1] x1 + [1] x2 + [8] c_1(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))} and weakly orienting the rules { a(0(), x) -> c(c(x)) , a^#(0(), x) -> c_2(c^#(c(x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))} Details: Interpretation Functions: c(x1) = [1] x1 + [6] b(x1) = [1] x1 + [10] a(x1, x2) = [1] x1 + [1] x2 + [6] 0() = [12] c^#(x1) = [1] x1 + [12] c_0(x1) = [1] x1 + [1] a^#(x1, x2) = [1] x1 + [1] x2 + [8] c_1(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { c(c(b(c(x)))) -> b(a(0(), c(x))) , c(c(x)) -> b(c(b(c(x))))} Weak Rules: { c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x))) , a(0(), x) -> c(c(x)) , a^#(0(), x) -> c_2(c^#(c(x)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { c(c(b(c(x)))) -> b(a(0(), c(x))) , c(c(x)) -> b(c(b(c(x))))} Weak Rules: { c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x))) , a(0(), x) -> c(c(x)) , a^#(0(), x) -> c_2(c^#(c(x)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { c_0(2) -> 9 , c_0(4) -> 9 , b_0(2) -> 2 , b_0(4) -> 2 , 0_0() -> 4 , c^#_0(2) -> 5 , c^#_0(4) -> 5 , c^#_0(9) -> 8 , a^#_0(2, 2) -> 7 , a^#_0(2, 4) -> 7 , a^#_0(4, 2) -> 7 , a^#_0(4, 4) -> 7 , c_2_0(8) -> 7} 2) { c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x))) , a^#(0(), x) -> c_2(c^#(c(x))) , c^#(c(x)) -> c_1(c^#(b(c(x))))} The usable rules for this path are the following: { c(c(b(c(x)))) -> b(a(0(), c(x))) , c(c(x)) -> b(c(b(c(x)))) , a(0(), x) -> c(c(x))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { c(c(b(c(x)))) -> b(a(0(), c(x))) , c(c(x)) -> b(c(b(c(x)))) , a(0(), x) -> c(c(x)) , c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x))) , a^#(0(), x) -> c_2(c^#(c(x))) , c^#(c(x)) -> c_1(c^#(b(c(x))))} Details: We apply the weight gap principle, strictly orienting the rules {c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))} Details: Interpretation Functions: c(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] a(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [0] c^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] a^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1(x1) = [1] x1 + [7] c_2(x1) = [1] x1 + [5] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c(c(b(c(x)))) -> b(a(0(), c(x)))} and weakly orienting the rules {c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c(c(b(c(x)))) -> b(a(0(), c(x)))} Details: Interpretation Functions: c(x1) = [1] x1 + [14] b(x1) = [1] x1 + [0] a(x1, x2) = [1] x1 + [1] x2 + [6] 0() = [12] c^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] a^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a^#(0(), x) -> c_2(c^#(c(x)))} and weakly orienting the rules { c(c(b(c(x)))) -> b(a(0(), c(x))) , c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a^#(0(), x) -> c_2(c^#(c(x)))} Details: Interpretation Functions: c(x1) = [1] x1 + [13] b(x1) = [1] x1 + [4] a(x1, x2) = [1] x1 + [1] x2 + [8] 0() = [13] c^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [3] a^#(x1, x2) = [1] x1 + [1] x2 + [2] c_1(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { c(c(x)) -> b(c(b(c(x)))) , a(0(), x) -> c(c(x)) , c^#(c(x)) -> c_1(c^#(b(c(x))))} Weak Rules: { a^#(0(), x) -> c_2(c^#(c(x))) , c(c(b(c(x)))) -> b(a(0(), c(x))) , c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { c(c(x)) -> b(c(b(c(x)))) , a(0(), x) -> c(c(x)) , c^#(c(x)) -> c_1(c^#(b(c(x))))} Weak Rules: { a^#(0(), x) -> c_2(c^#(c(x))) , c(c(b(c(x)))) -> b(a(0(), c(x))) , c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { c_0(2) -> 4 , c_1(2) -> 7 , c_2(2) -> 11 , b_0(2) -> 2 , b_1(7) -> 6 , b_2(11) -> 10 , 0_0() -> 2 , c^#_0(2) -> 1 , c^#_0(4) -> 3 , c^#_1(6) -> 5 , c^#_1(7) -> 8 , c^#_2(10) -> 9 , a^#_0(2, 2) -> 1 , c_1_1(5) -> 3 , c_1_2(9) -> 8 , c_2_0(3) -> 1 , c_2_1(8) -> 1}