'Weak Dependency Graph [60.0]'
------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ c(c(b(c(x)))) -> b(a(0(), c(x)))
, c(c(x)) -> b(c(b(c(x))))
, a(0(), x) -> c(c(x))}
Details:
We have computed the following set of weak (innermost) dependency pairs:
{ c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))
, c^#(c(x)) -> c_1(c^#(b(c(x))))
, a^#(0(), x) -> c_2(c^#(c(x)))}
The usable rules are:
{ c(c(b(c(x)))) -> b(a(0(), c(x)))
, c(c(x)) -> b(c(b(c(x))))
, a(0(), x) -> c(c(x))}
The estimated dependency graph contains the following edges:
{c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))}
==> {a^#(0(), x) -> c_2(c^#(c(x)))}
{a^#(0(), x) -> c_2(c^#(c(x)))}
==> {c^#(c(x)) -> c_1(c^#(b(c(x))))}
{a^#(0(), x) -> c_2(c^#(c(x)))}
==> {c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))}
We consider the following path(s):
1) { c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))
, a^#(0(), x) -> c_2(c^#(c(x)))}
The usable rules for this path are the following:
{ c(c(b(c(x)))) -> b(a(0(), c(x)))
, c(c(x)) -> b(c(b(c(x))))
, a(0(), x) -> c(c(x))}
We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
'Weight Gap Principle'
----------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ c(c(b(c(x)))) -> b(a(0(), c(x)))
, c(c(x)) -> b(c(b(c(x))))
, a(0(), x) -> c(c(x))
, c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))
, a^#(0(), x) -> c_2(c^#(c(x)))}
Details:
We apply the weight gap principle, strictly orienting the rules
{a^#(0(), x) -> c_2(c^#(c(x)))}
and weakly orienting the rules
{}
using the following strongly linear interpretation:
Processor 'Matrix Interpretation' oriented the following rules strictly:
{a^#(0(), x) -> c_2(c^#(c(x)))}
Details:
Interpretation Functions:
c(x1) = [1] x1 + [0]
b(x1) = [1] x1 + [0]
a(x1, x2) = [1] x1 + [1] x2 + [0]
0() = [0]
c^#(x1) = [1] x1 + [1]
c_0(x1) = [1] x1 + [1]
a^#(x1, x2) = [1] x1 + [1] x2 + [4]
c_1(x1) = [0] x1 + [0]
c_2(x1) = [1] x1 + [0]
Finally we apply the subprocessor
We apply the weight gap principle, strictly orienting the rules
{a(0(), x) -> c(c(x))}
and weakly orienting the rules
{a^#(0(), x) -> c_2(c^#(c(x)))}
using the following strongly linear interpretation:
Processor 'Matrix Interpretation' oriented the following rules strictly:
{a(0(), x) -> c(c(x))}
Details:
Interpretation Functions:
c(x1) = [1] x1 + [0]
b(x1) = [1] x1 + [0]
a(x1, x2) = [1] x1 + [1] x2 + [2]
0() = [0]
c^#(x1) = [1] x1 + [0]
c_0(x1) = [1] x1 + [9]
a^#(x1, x2) = [1] x1 + [1] x2 + [8]
c_1(x1) = [0] x1 + [0]
c_2(x1) = [1] x1 + [1]
Finally we apply the subprocessor
We apply the weight gap principle, strictly orienting the rules
{c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))}
and weakly orienting the rules
{ a(0(), x) -> c(c(x))
, a^#(0(), x) -> c_2(c^#(c(x)))}
using the following strongly linear interpretation:
Processor 'Matrix Interpretation' oriented the following rules strictly:
{c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))}
Details:
Interpretation Functions:
c(x1) = [1] x1 + [6]
b(x1) = [1] x1 + [10]
a(x1, x2) = [1] x1 + [1] x2 + [6]
0() = [12]
c^#(x1) = [1] x1 + [12]
c_0(x1) = [1] x1 + [1]
a^#(x1, x2) = [1] x1 + [1] x2 + [8]
c_1(x1) = [0] x1 + [0]
c_2(x1) = [1] x1 + [1]
Finally we apply the subprocessor
'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
------------------------------------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost relative runtime-complexity with respect to
Strict Rules:
{ c(c(b(c(x)))) -> b(a(0(), c(x)))
, c(c(x)) -> b(c(b(c(x))))}
Weak Rules:
{ c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))
, a(0(), x) -> c(c(x))
, a^#(0(), x) -> c_2(c^#(c(x)))}
Details:
The problem was solved by processor 'Bounds with default enrichment':
'Bounds with default enrichment'
--------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost relative runtime-complexity with respect to
Strict Rules:
{ c(c(b(c(x)))) -> b(a(0(), c(x)))
, c(c(x)) -> b(c(b(c(x))))}
Weak Rules:
{ c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))
, a(0(), x) -> c(c(x))
, a^#(0(), x) -> c_2(c^#(c(x)))}
Details:
The problem is Match-bounded by 0.
The enriched problem is compatible with the following automaton:
{ c_0(2) -> 9
, c_0(4) -> 9
, b_0(2) -> 2
, b_0(4) -> 2
, 0_0() -> 4
, c^#_0(2) -> 5
, c^#_0(4) -> 5
, c^#_0(9) -> 8
, a^#_0(2, 2) -> 7
, a^#_0(2, 4) -> 7
, a^#_0(4, 2) -> 7
, a^#_0(4, 4) -> 7
, c_2_0(8) -> 7}
2) { c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))
, a^#(0(), x) -> c_2(c^#(c(x)))
, c^#(c(x)) -> c_1(c^#(b(c(x))))}
The usable rules for this path are the following:
{ c(c(b(c(x)))) -> b(a(0(), c(x)))
, c(c(x)) -> b(c(b(c(x))))
, a(0(), x) -> c(c(x))}
We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
'Weight Gap Principle'
----------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ c(c(b(c(x)))) -> b(a(0(), c(x)))
, c(c(x)) -> b(c(b(c(x))))
, a(0(), x) -> c(c(x))
, c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))
, a^#(0(), x) -> c_2(c^#(c(x)))
, c^#(c(x)) -> c_1(c^#(b(c(x))))}
Details:
We apply the weight gap principle, strictly orienting the rules
{c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))}
and weakly orienting the rules
{}
using the following strongly linear interpretation:
Processor 'Matrix Interpretation' oriented the following rules strictly:
{c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))}
Details:
Interpretation Functions:
c(x1) = [1] x1 + [0]
b(x1) = [1] x1 + [0]
a(x1, x2) = [1] x1 + [1] x2 + [0]
0() = [0]
c^#(x1) = [1] x1 + [1]
c_0(x1) = [1] x1 + [0]
a^#(x1, x2) = [1] x1 + [1] x2 + [0]
c_1(x1) = [1] x1 + [7]
c_2(x1) = [1] x1 + [5]
Finally we apply the subprocessor
We apply the weight gap principle, strictly orienting the rules
{c(c(b(c(x)))) -> b(a(0(), c(x)))}
and weakly orienting the rules
{c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))}
using the following strongly linear interpretation:
Processor 'Matrix Interpretation' oriented the following rules strictly:
{c(c(b(c(x)))) -> b(a(0(), c(x)))}
Details:
Interpretation Functions:
c(x1) = [1] x1 + [14]
b(x1) = [1] x1 + [0]
a(x1, x2) = [1] x1 + [1] x2 + [6]
0() = [12]
c^#(x1) = [1] x1 + [0]
c_0(x1) = [1] x1 + [0]
a^#(x1, x2) = [1] x1 + [1] x2 + [0]
c_1(x1) = [1] x1 + [0]
c_2(x1) = [1] x1 + [1]
Finally we apply the subprocessor
We apply the weight gap principle, strictly orienting the rules
{a^#(0(), x) -> c_2(c^#(c(x)))}
and weakly orienting the rules
{ c(c(b(c(x)))) -> b(a(0(), c(x)))
, c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))}
using the following strongly linear interpretation:
Processor 'Matrix Interpretation' oriented the following rules strictly:
{a^#(0(), x) -> c_2(c^#(c(x)))}
Details:
Interpretation Functions:
c(x1) = [1] x1 + [13]
b(x1) = [1] x1 + [4]
a(x1, x2) = [1] x1 + [1] x2 + [8]
0() = [13]
c^#(x1) = [1] x1 + [1]
c_0(x1) = [1] x1 + [3]
a^#(x1, x2) = [1] x1 + [1] x2 + [2]
c_1(x1) = [1] x1 + [1]
c_2(x1) = [1] x1 + [0]
Finally we apply the subprocessor
'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
------------------------------------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost relative runtime-complexity with respect to
Strict Rules:
{ c(c(x)) -> b(c(b(c(x))))
, a(0(), x) -> c(c(x))
, c^#(c(x)) -> c_1(c^#(b(c(x))))}
Weak Rules:
{ a^#(0(), x) -> c_2(c^#(c(x)))
, c(c(b(c(x)))) -> b(a(0(), c(x)))
, c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))}
Details:
The problem was solved by processor 'Bounds with default enrichment':
'Bounds with default enrichment'
--------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost relative runtime-complexity with respect to
Strict Rules:
{ c(c(x)) -> b(c(b(c(x))))
, a(0(), x) -> c(c(x))
, c^#(c(x)) -> c_1(c^#(b(c(x))))}
Weak Rules:
{ a^#(0(), x) -> c_2(c^#(c(x)))
, c(c(b(c(x)))) -> b(a(0(), c(x)))
, c^#(c(b(c(x)))) -> c_0(a^#(0(), c(x)))}
Details:
The problem is Match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ c_0(2) -> 4
, c_1(2) -> 7
, c_2(2) -> 11
, b_0(2) -> 2
, b_1(7) -> 6
, b_2(11) -> 10
, 0_0() -> 2
, c^#_0(2) -> 1
, c^#_0(4) -> 3
, c^#_1(6) -> 5
, c^#_1(7) -> 8
, c^#_2(10) -> 9
, a^#_0(2, 2) -> 1
, c_1_1(5) -> 3
, c_1_2(9) -> 8
, c_2_0(3) -> 1
, c_2_1(8) -> 1}